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Quantum electrodynamical approach to multiphoton ionisation 
in the high-intensity H field 

D-S Guo and T Abergt 
Department of Physics and Chemical Physics Institute, University of Oregon, Eugene, OR 
97403, USA 

Received 6 April 1988, in final form 4 July 1988 

Abstract. We solve the Dirac equation for an electron interacting with a quantised and 
elliptically polarised electromagnetic field. We use the solution to obtain a relativistic 
S-matrix amplitude for multiphoton ionisation in the high-intensity limit. Its non-relativistic 
limit is also derived and is used to construct a multiphoton transition-rate formula which 
is compared with previous results. 

1. Introduction 

The development of high-power lasers has made it possible to achieve light intensities 
which are of the order of one atomic unit (Rhodes 1987). At these field strengths 
relativistic effects become important (Mittleman 1982, Krstic and Mittleman 1982). It 
is thus of interest to study multiphoton ionisation from the point of view of quantum 
electrodynamics (QED). 

In recent work Filipowicz (1985) obtained the solution of the Dirac equation for 
an electron interacting with a quantised electromagnetic plane wave. He also discussed 
the non-quantum limit of this solution. The wave was assumed to be circularly 
polarised. The wavefunction was given in a form which suggests that a generalisation 
to elliptically polarised light is feasible. This generalisation is carried out in the present 
work and is used to obtain a relativistic S-matrix amplitude for multiphoton ionisation 
in the high-intensity limit. The corresponding classical limits are derived in both the 
relativistic and non-relativistic approximations. Our procedure leads to a unique 
identification of an index in the classical expressions that gives the number of absorbed 
photons. 

A classical non-relativistic transition-rate formula for elliptically polarised light has 
recently been reported by Bashkansky et al (1987) who have successfully used it for 
an analysis of angular distributions in above-threshold ionisation (ATI) .  This form of 
the cross section originates from the work of Keldysh (1965), Faisal (1973) and Reiss 
(1980). In essence it is based on the approximation of using, for the final state, the 
non-relativistic Volkov solution (Reiss 1980) representing a free electron in the elec- 
tromagnetic field. The effect of the ionic field is thus ignored. It is shown that our 
non-relativistic classical S-matrix amplitude leads to the same transition-rate formula 
as theirs (Bashkansky e? a1 1987). Its quantum electrodynamical origin is thus estab- 
lished. Consequently, systematic improvements should be feasible since the availability 
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4578 D-S Guo and T Aberg 

of a complete set of quantised solutions of the Dirac equation for an arbitrary 
electromagnetic field makes it possible to consider perturbation corrections involving 
the ionic field. 

The solutions obtained in this work are also useful for the analysis of a number 
of other physical processes involving electrons and positrons in external fields, such 
as the bremsstrahlung processes (Bergou 1980, Bergou and Varr6 1980). 

2. The Volkov solution in a quantised and elliptically polarised field 

In the following we use the metric tensor gWv with go, = 1 and g, ,  = g,, = g, ,  = - 1 and 
glly  = 0 ( p  # v). The scalar product of two 4-vectors is defined as a b  = g, ,apb” and 
the ya scalar product is denoted by d; y stands for 4 x 4  Dirac matrices. 

The 4-potential of the electromagnetic field is given by 

A , ( k x ) = g [ ~ , a  exp(-ikx)+s~a’exp(ikx)] (1) 

& * E  = -1 & E  = & * E *  = -cos (. (2) 

where 

These relations follow from the representation E = (0, E) ,  where E = E, cos((/2) + 
is, sin((/2). It is understood that the wave propagates in the direction E, of k = ( w ,  k ) .  

Consequently the potential (1) corresponds to a situation in which the polarisation 
is obtained by means of half- and quarter-wave retardation plates inserted into the 
laser beam. The angle (/2 is the angle between the plane of oscillation after the half- 
wave plate and the optical axis of the quarter-wave plate. Thus ( = ~ / 2  corresponds 
to circular polarisation and ( = 0 to linear polarisation. 

The Dirac equation to be solved is 

[id-eA(kx)-m]i+b(x)=O (3) 

where e < 0 for an electron and where relativistic units, with h = 1 and c = 1, are used. 
Following Filipowicz (1985) we introduce the transformation 

+ ( X I  = exp(ikxN,)4(x) (4) 
where N ,  = $( u+u + aa+)  is the occupation number operator. It transforms equation 
(3 )  into 

( id-XN,-eA-m)d(x)=O (5) 
where A = g ( L a  +d*a’ )  is now coordinate independent. The solution of equation (5) 
has the form 

4 ( x )  = exp(-ipx)4 ( 6 )  

( # - kN, - eA - m)+ = 0. (7) 

9 = ( @ + m)k/2 kp (8) 

C$ = [l+e(KA/2kp)]9+. (9) 

where C$ is a coordinate-independent bispinor satisfying the equation 

We introduce the projection operators 

2 = K (  # - m)/2kp 

and express 4 in terms of 94. It follows from equation (7 )  and definitions (8) that 
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The advantage of using this relationship lies in the fact that it is easier to solve for 
94 than 4. Multiplying equation (7) from the left by (@+m)/2kp, using equation 
(9) and properties of the y matrices yields 

(2 kpN, + 2eAp - e2A2 + e2g2 9’s - pz + m’) 9’4 = 0 (10) 
where A = g(E*af+ Ea) and S = +[I*, I] is a polarisation-dependent spin operator. 
Since 9239 = 98 and S2 = s2 with s = *sin 6, we have the eigenvalue equation 

9S9(S+s)z,=s9(S+s)u ( 1 1 )  
where z, is an arbitrary bispinor. For circular polarisation s = * l  and for linear 
polarisation s = 0. Filipowicz (1985) only considered the s = i l  case and used eigen- 
vectors of S rather than 9S to classify the solutions of equation (3) which lead to 
some unnecessary conditions regarding the choice of v. 

We shall use the ansatz 

94 = 9 ( S +  s)u ip )  (12) 
where Ip)  is a state which depends solely on the field operators and has to be determined. 
It follows from equations (10) and (1 1 )  that 

Since E E  = E * & *  = -cos 6, the A’ term does not reduce to a bilinear form, proportional 
to N,. Hence equation (13 )  cannot be diagonalised directly using a shift operator as 
in the circularly polarised case (Filipowicz 1985). 

( 2 k p N a + 2 e A p - e 2 A 2 + e 2 g 2 s - p 2 + m 2 ) l p ) = 0 .  (13) 

We define two operators c and c+ as the linear combinations 
c = a cosh x - a f  sinhx 

c + =  - a  sinh x +  a+ cosh x 
where x will be determined such that it eliminates the quadratic term a*+a+* in 
equation (13). The operators (14) which obey the commutation relation [ c, c’] = 1 
have an occupation number representation of eigenkets, In,), which form a complete 
orthonormal set. Thus it can be proved that 

where N, = f( c+c + ccc) is a Hermitian operator and where n, = 0 , 1 , 2 , 3 ,  . . . . The 
states In,) (n, 3 1 )  are generated from the ‘vacuum’ state with ( - l ) ! !  = 1 

Nclnc)= (nc+;)lnc) ( 1 5 )  

for which ~10,) = 0 and (O,lO,) = 1, by 

It also follows from the proof which is given in appendix 1 that cln,) = G i n c  - 1)  and 
c+I n, - 1 )  = f i l n c ) ,  in accordance with equations (15 )  and (17). Consequently, the N, 
and N, representations are completely analogous except that the ‘vacuum’ states are 
different. Furthermore, it shows that they are connected by a unitary transformation, 
V ,  such that 

where 52 is the transformation (14). 
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By using the inverse 

a = c cosh x + c+ sinh x 
at = c sinh x + c+ cosh x 

of transformation ( 1 4 )  and by putting 

tanh 2 x  = - e 2 g 2  cos t / ( k p  + e 2 g 2 )  ( 1 9 )  

[ ~ ( c ' c + c c + ) + 2 e g p ( ~ , c +  ~ T c + ) + e ~ g ~ s - p * + m ~ ] l p ) = ~  ( 2 0 )  

we have 

where C = [( kp + e2g2)' - e4g4 cos2 
E* be replacing c by E and c+ by E* in the transformation (18). 

shift operator 

and where E ,  and E :  are obtained from E and 

The linear form E ~ C + E : C +  in equation ( 2 0 )  can now be eliminated by using the 

Dp =exp(-&++S*c) ( 2 1 )  

in analogy with the work of Filipowicz (1985). The choice S = -egpE:/C leads to the 
equation 

[ p 2  - 2 C N ,  + 2e2g'C- ' (  P E , ) (  P E : )  - e 2 g 2 s  - m'] Dplp) = 0 ( 2 2 )  

which is the equation of the 'harmonic oscillator' in the N, representation. If we set 
l p )  = D;inc) in equation ( 2 2 )  we find 

p 2  = m 2 + 2 C , , , k p  ( 2 3 )  

where 

C,,, = C , , , ( k p , p e , , p ~ : )  = ( k p ) - ' [ C ( n c + f ) + ~ e 2 g 2 s - e 2 g 2 C - ' ( p s , ) ( p s ~ ) ] .  

Before writing the complete solution of the Dirac equation ( 3 )  we shall introduce 
the 4-vector P = p - C,, ,k  which, according to equation ( 2 3 ) ,  is on the mass shell, i.e. 
P 2  - m2 = 0. Since kp = kP, EP = EP, and E*P = E * P  we may replace p by P in equation 
(24). Consequently, by combining equations (4), (6 ) ,  (9), ( 1 2 ) ,  ( 2 3 )  and ( 2 4 )  the 
solution of the Dirac equation can be given in the following explicit form: 

$p,,~s = exp[ -iPx - i CnCs (kP,  P E , ,  PE :) kx + i kxN,  I[ 1 + e ( k , 4 / 2  k P ) ]  D ; 9  ( S  + s)  V I  n,) 

where the shift operator D p  and the porjection operator 9 now have p replaced by 
P everywhere. This replacement can also be carried out in in,) according to equation 

By using the identity A,( k x )  = exp(iwtN,)A,(-k. r)exp(-iwtN,) and the transfor- 
mation +(x)  = exp(iwtN,)+o(x) the Dirac equation ( 3 )  can be cast in a form in which 
the vector potential is time independent. The solution ~ o ( x )  is given by equation ( 2 5 )  
except that kxN,  is replaced by - ( k - r ) N , .  From the remaining time dependence of 
the exponential in equation ( 2 5 )  one finds that the eigenenergy of the corresponding 
stationary solution is given by 8 = E + CnCsw,  where E = ( P 2 +  m')"' is the kinetic 
energy of the electron and where CnCs is given by equation (24). In the g + O  limit 
C n , s ~  reduces to the free photon energy ( n , + f ) w .  Thus the shifted energy Z w =  
Cn,sw - ( n ,  +;)U is the quantum-mechanical analogue of the ponderomotive potential 
energy. 

( 2 5 )  

( 1 9 ) .  
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Since the eigenkets In,) form a complete set in the photon Hilbert space and the 
transformation from the N ,  representation to the N, representation is unitary, the 
solutions (25) are orthogonal. The explicit proof follows very much the same lines as 
the proof of Filipowicz (1'985) for the case of circularly polarised light. In fact equation 
(25) reduces to the Filipowicz equation, provided we identify his eigenfunction of the 
spin operator B as ( S + s ) l v ) .  

3. S-matrix element for multiphoton ionisation 

In this section we shall use the wavefunction (25) to obtain a lowest-order S-matrix 
element for multiphoton ionisation in the high-intensity limit. In terms of non- 
relativistic time-dependent scattering theory, the model to be considered (Mittleman 
1982) is the following. An atom is put into a monochromatic EM field of any polarisa- 
tion. The field strength is raised adiabatically in the time interval (-CO, 0) to a constant 
value which persists for a long time 7. During that time, an electron interacts with the 
field and becomes ionised with a certain probability. After a time 7 the field is switched 
off adiabatically in the time interval (7, +CO). This is a uniquely defined situation which 
allows the calculation of the ionisation probability per unit time from the S-matrix 
element 

where vph( t )  is the time-dependent potential, representing the interaction between the 
electron and the field. In equation (26), c,bi( t )  = c,bi exp( -iEit) is the stationary initial- 
state wavefunction of a bound electron. Thus we have [-(1/2m)V2+ V,]+i = E&, 
where V, is an effective potential energy describing the interaction between the electron 
and the ionic core. The scattering wavefunction $; is given by 

where 4;( t )  is the scattering solution of the time-dependent Schrodinger equation 
t ) / d t  = [-( 1/2m)V2+ vph( t)]c,bf( t )  satisfying the ingoing-wave boundary condi- 

tion. In equation (27), H = H ( t )  = [ - (1 /2m)~ '+  v,+ Vph(t)] is the full Hamiltonian 
in which Vph( i o o )  = 0 due to adiabatic switching. Thus, E, is the kinetic energy of the 
outgoing electron in the absence of the EM field. Equation (27) describes the scattering 
of the electron by the ion core when the electron is removed under the action of the 
field. The underlying assumption of equations (26) and (27) is the independence of 
V, on the field and thus on the time. 

Usually it is assumed (Keldysh 1965, Faisal 1973, Reiss 1980, Krstic and Mittleman 
1982) that $;( t )  can be replaced by the non-relativistic 'Volkov' solution 4,-( t) of the 
time-dependent Schrodinger equation with the potential vph( t )  in the S-matrix element 
(26). This seems to be a reasonable approximation for high field strengths but it has 
never been thoroughly tested. Since V, + -2 ,e2r- '  the validity of this approximation 
surely depends on 2, and it may only be applicable to 2, = 0 (Reiss 1980) because of 
the long-range nature of the Coulomb potential. In order to explore this question it 
is useful to formulate the model based on equations (26) and (27) in terms of QED. 

This also proves the interpretation in the photon picture of the non-relativistic transition 
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rate formula (Reiss 1980, Bashkansky et a1 1987). Furthermore, the magnetic field is 
automatically included. 

Within QED a scattering event is usually described by terms of the lowest possible 
order in the expansion of the S matrix. This will obviously not work in the present 
case, where the absorption of, say, 500 photons (Chin et al 1987) must be considered. 
It is, however, possible to formulate the scattering theory within QED in a manner 
which is analogous to the general non-relativistic treatment, described in many 
textbooks (e.g. Wu and Ohmura 1962, Taylor 1983). The treatment is based on the 
use of the Stuckelberg-Feynman propagator (Greiner et a1 1985). The application of 
this technique to our case indicates that the S-matrix element which corresponds to 
equation (26), but with $J( t )  replaced by 4f( t ) ,  is given by 

s, = -ie(+P,,slroYA(k~)I$L,, 0 (28) 

where ( C l p n C s  is given by equation (25) and where I$,, I) is the direct product of the 
initial-state 4-spinor $, and the photon state 11). The photons are assumed to be in 
the elliptically polarised state, defined by the 4-vector k in equation (1) and by the 
polarisation vector (2). Since y”yA is a Hermitian operator we have 

S$ = ie d4X +:(IlroYA(kx)lcLPn‘s) (29) 

where X = -iel(Il yoyA(  kx)l$p,,s) can be evaluated using boson-operator techniques 
(Louise11 1973). The result is 

X = -exp( -i Px + i ( I + 5 - CHC5) kx] 
SI 

[ 1 e 1 g [ ( I + 1 ) 1’2( y ‘ A )  DT+ ,m + l”’( yo,&*) DT-, , m ]  
m=O 

+ (e2g2/2kp)(yoX)[[A*AI+AA*(I+ l)]D&,, 

-COS .${[ ( l +  1) (  I + 2)]”2DT+2,m + [I(  I - l)]”*DT&}]( ml nc)]P(B + S ) U  

(30) 

where we have introduced the complete set of photon states 1 m )  in the N, representation. 
The matrix element D:,,, is given by 

D:,m =(I’lexp(s,a’-s%a)im) (31) 

8, = l e l g P ( ~ * c o s h 2 , y + ~  sinh2,y)/C (32) 

where 

according to equations (14), (18) and (21). 
The integration over time in equation (29) results in the Dirac delta function 

2.ir8[El - E  + ( I + $ ) w  - C,,,w] which expresses energy conservation in terms of the 
initial-state energy E, + ( I  + $ ) U  and the final-state energy 8 = E + CnCrw. The factor 
I +$ - C,,,, which must be positive, determines the dependence of the kinetic energy 
E on n, for the two possible values of s. For example, for circular polarisation the 
Dirac delta function yields the condition 

E = qw - Z w  + E,  (33) 

where q = I - n is the number of photons absorbed and where Z w  is the quantum- 
mechanical ponderomotive potential energy. The factor 2 is given, according to 
equation (24), by 

Z = (e2g2/kP)[ n +$+is - ( P E ) (  PE*)/(kP+ e2g2)]. (34) 
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For intense fields, 1 is large and hence the electromagnetic field should be described 
in terms of a classical vector potential. Using the phase representation of the photon 
field (Mittleman 1982) the transformation from the quantum-mechanical to the classical 
field is accomplished by putting g = h/d1 in equation (1) and by letting 1 go to infinity. 
Thus hw is the classical field strength. In the following we shall show that in the 
classical limit and for any polarisation the amplitude (28) reduces to a relativistic 
amplitude in which j = 1 - n, with both 1 and n large, has the precise meaning of j 
(transverse) photons absorbed. 

The derivation is based on two relations which we prove in appendix 2 .  The first 
one is 

where 

and 

+c =tan-' [ (PJPX)  tan(5/2)1. (37) 

The angle 5 is defined in equation ( 2 ) ,  and PJ, and P, are the components of P = ( E ,  P )  
in the directions of E), and E,, respectively. The second relation is 

f'x 

where 

q = (Z/2)  cos 6. (39) 

The quantity Z = e 2 h 2 / k P  is obtained from equation (24) by letting n go to infinity 
and it is thus the classical ponderomotive potential energy per unit frequency. As 
indicated by equations (35) and (38), finite contributions to the scattering amplitude 
(28) come from regions in the photon space in which the limit 1 + a3 implies that the 
photon numbers m and n both go to infinity in such a way that 1 - m = q and n - m = 2 t  
stay finite. As shown by equation (301, each term in the amplitude (28) is either 
proportional to gJ1' or g2V, where 1' is a large integer. Hence the amplitude ( 2 8 )  
becomes proportional to the classical field strength. By taking the high-photon limit 
in the exponential of the integrand (30) and by using equations (35) and (38) we obtain 

S, = 2.irix:I elh ($,-, exp[i(j - 1) #JEIY~L  + 8 j + ~  exp[i(j + 1)45l Y'L" 

- (Z/lelh)U2, exp(ij&)+(cos 5/2){$,+2 exp[i(j+2)dEI 

+$,-2 exp[i(j -2)&]}lIyok)@,(P- j k +  Zk)G(E, - E + j w  - Z w )  (40) 

where j = 1 - n is the difference between the number of initial and final photons. The 
function $,, which depends on l, q and c$,, is given by 

+m 

8, =$,,Cl, T,+* )  = C J - , - * m ( C ) J m ( q )  ex~(2im+c).  (41) 
m=--m 
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For c$* = O  it reduces to the generalised Bessel function Lj(& 7 )  (Reiss 1980). In 
equation (40), @, (p )  is the Fourier transform of the initial-state 4-spinor G I ( r )  and is 
given by 

cDi(p) = d3rGl(r)  exp(-ipsr). 

We have used the abbreviation x c  for the eigenvector (11) of the spin operator 9%. 
Equation (40) shows that in this model the multiphoton absorption does not only 
occur as a consequence of absorption of j photons but also as a result of virtual 
processes in which one or two photons are either re-emitted or re-absorbed. The 
two-photon processes do not occur in the circularly polarised case. This interpretation 
also reveals one of the shortcomings of the lowest-order approximation (28) since the 
inclusion of the interaction between the ion core and the electron would introduce 
higher-order virtual processes along with modifications of the j ,  j *  1 and j * 2  terms 
in equation (40). Systematic improvements may be easier within the full photon picture 
than within the classical framework. 

Equation (40) is our final result. Further developments for particular cases should 
be based on the general expression 

d W/dR = 27r Tr(Sp,&) (43) 

which gives the probability, as a function of time T, that an electron is emitted in a 
given direction as a result of multiphoton absorption of j photons. In equation (43), 
pI is a density matrix which describes the orientation of the target atoms. The density 
matrix pf describes the efficiency with which the detector detects the components of 
the spin in a given direction. The use of the scattering matrix elements (40) in equation 
(43) implies that we still consider the model pulse shape depicted in the beginning of 
this section. For random initial orientation and for a polarisation-insenstive detector, 
the probability (43) reduces to 

which contains an average over the initial magnetic quantum numbers mj and a 
summation over the quantum numbers s = *sin 6. The probability per unit time is 
given by 

dw d W  
- lim - 

dR r-=dR 
-- (45) 

in which the relation 2 d 2 ( E i  - E + j w  - Z w )  = 6 ( E j  - E + j w  - Z w ) r  must be used. It 
is in principle possible to write a general closed-form expression for the rate (45) using 
equation (40). 

4. The non-relativaitic limit 

In this section we derive the non-relativistic transition rate formula of Bashkansky 
e? a1 (1987) from our equation (40). The derivation serves as a consistency check of 
our approach. It is based on the observations that yoL  = -a* E ,  y°K = w -a- k and 
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that in the non-relativistic limit and the long-wave approximation we have a’ E + 
( E  P)/ m, kP + mo, and P - j k  + Zk + P. According to equation (40), we then have 

s ~ =  - 2 r i  - lelh exp(ij4t)( [2j-l exp(-i4,)(P.E)+2j+l exp(i4,)(P.E*)1 
m 

x +,( P ) 6 (  E - E, - jw  + ZW)  (46) 

where E = P2/2m, Z = e2A2/mw, and where the function 2, =$,(,(5, 7, &), defined by 
equation (41), now depends on l=21elAIP.~I/mo and 7 = ( 2 / 2 )  cos 5. The momen- 
tum vector P is defined on the mass shell and it is the one which must be used in the 
limiting procedure. In the matrix multiplication of x: with @*(P) we keep only the 
large component which is 4,(P). Since Pa E = IP. E /  exp(i4t) and since it can easily 
be proved that 

(47) 2j2, + 5( 2,-, + 2,+, 1 + 2 7  [ 2 , - 2  exp(-W,)  + $,+2 exp(2i4t)I= 0 

the non-relativistic S-matrix element (46) reduces to 

S Y = 2 r i o ( j - z ) 2 , ( f ;  ~ , 4 0  e x p W s ) 4 , ( P ) s ( E  - E ,  - j w + z w )  (48) 

for the absorption of j photons. 
The rate corresponding to equation (48) is obtained by using the procedure associ- 

ated with equation (45) and by taking the proper normalisation of the solution (25) 
into account. We have 

The integration over /PI is accomplished by using the relation (Reiss 1980) 

s (P’/ 2 m + EB - j w  + z w  ) 

=(m/2w)’”(j-2-E~/W)-’’~6(IPI-(2mw)”~(j-Z- (50) 

where EB = -Ei is the positive ionisation (binding) energy of the electron in the ground 
state of the unperturbed atom. It should be noted that the length of the P vector in 
the Fourier transform C#J~(P)  must fulfil the energy conservation relation E = P2/2m = 
( j - Z ) w  - EB>0. This relation also shows that j > Z +  E B / w  (Reiss 1980). 

The rate expression (49) is identical with the one reported by Bashkansky eta1 
(1987). To see this we note that2Zj(L, 7, 4,) = (-l)jyj(& -7, 4t) according to equation 
(41) and that 

l=-- 2 ’ e ’ A I P - ~ l = 2 s i n  O[Z(j-Z-E, /w)( l+cos 5 c 0 s 2 4 ) ] ~ ’ ~  (51) 
mw 

where 8 and 4 are the polar and azimuthal angles of P, respectively. In their expression, 
Bashkansky et al (1987) use 2-j rather than 2j and erroneously write Z = e2A2/2mw 
instead of e2h2/mw (A2 = 2A2 holds only for circular polarisation). 
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5. Discussion 

The QED solutions (25) may be reduced to the classical solutions 

(CIP(x)=(1+ekA/2kP) exp (kP)-’(ePA-4e2A2) d(kx))]Pu (52) 

using the same technique that was used to obtain the S-matrix element (40) from its 
QED version (28). The solutions can also be obtained directly by solving the Dirac 
equation for the external field potential 

A = A [ E  exp(-ikx)+&* exp(ikx)] (53) 
where the 4-vectors E and E *  fulfil equations (2). In equation (52), P is on the mass 
shell and consequently ??’U, where U can be any bispinor, is a plane-wave bispinor. 
This follows from the definition of $3’ given by equation (8) and from the fact that 
P 2  - m 2  = 0. 

The result given above has some relevance to a comment made by Filipowicz (1985) 
on his classical solution. This author has (2kp)-’(P- eA+ m ) k u ’  instead of (1 + 
ekA/2kP) Pu in equation (52) and claims that, since U ’  is an arbitrary bispinor, his is 
a more general solution than the Volkov solution (Berestetskii et a1 1971) where U ’  is 
the plane-wave bispinor. However, using the definition (8) of B and the relation 
kB =k, it can be seen that both forms are identical provided U ’  = U. This means that, 
since B u  is a plane-wave bispinor for any U, the Filipowicz solutions and our classical 
solutions are exactly the same as the Volkov solution. 

It is important to realise that our QED procedure for multiphoton ionisation, even 
with systematic improvements, is equivalent to the model problem defined by equations 
(26) and (27) in the non-relativistic limit. Nevertheless, one may learn a great deal 
by using the basis set (25) to obtain systematic improvements of the S-matrix element 
(28). First, there is the problem of including the effect of the Coulomb field. It is 
rewarding that the Coulomb matrix element can be worked out exactly using the basis 
set (28). Second, there is the question of the gauge dependence of the matrix element 
(28). Although the classical Volkov solution is invariant under gauge transformations 
of the type 

A: = A, +a,q = 0 0 7 = 0  (54) 

where q = q ( k x )  (Reiss 1979), the matrix element (28) is in general not so. The reason 
for this feature is that the initial and final states in the matrix element (28) are not 
solutions of the same Dirac equation. As far as we know, the gauge-dependence 
problem has only been studied within the classical approximation (Antunes Net0 and 
Davidovich 1984) where the A* term introduces additional complications (Kupersztych 
1979). Third, there is the question of relativistic effects. For example, according to 
equation (24), the ponderomotive potential is actually angle dependent in the relativistic 
limit. This means that the minimum number of photons required for ionisation may 
vary as a function of the direction of emission of the photoelectron. It seems that the 
relativistic matrix element (40) must be worked out in particular cases to study this 
and other effects, such as spin polarisation. 

Whether the study of the model problem discussed here is relevant to the understand- 
ing of multiphoton ionisation of many-electron atoms by strong laser pulses is another 
question. The use of the rate equation (49) in one form or another indicates that it 
correctly predicts, at least qualitatively, a number of experimental features. These 
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features include the suppression of low-energy peaks in ATI spectra (Bucksbaum et a1 
1986) including the general shape of the envelope of the peak structure for both 
circularly and linearly polarised light (Reiss 1980, 1987a, b). Equation (49) has also 
been found to yield angular distributions which agree quite well with experimental 
findings (Bashkansky eta1 1987). The model based on equation (49) predicts an 
intensity-dependent shift of the ATI peaks due to the ponderomotive potential energy. 
This shift is absent in ATI spectra for above-picosecond laser pulses. This can, however, 
be explained by the fact that the model discussed in the present paper more or less 
corresponds to a situation in which the electron stays in the pulse all the time as 
realised in subpicosecond experiments (Freeman et a1 1987, Muller et a1 1988). The 
above-picosecond experiments, on the other hand, correspond to a situation in which 
the electron rapidly leaves the pulse before the pulse decays (Becker et a1 1986, Agostini 
et a1 1987). There also are some indications that equation (49) predicts absolute rates 
which are too small by as much as orders of magnitude when a Coulomb field is 
present (Bashkansky et a1 1987, Shakeshaft and Potvliege 1987). Consequently, it is 
important to study the connection between the present approach and more realistic 
but elaborate theories (Crance 1987, Shakeshaft and Potviliege 1987, Shakeshaft and 
Tang 1987). 

In conclusion, we have obtained a complete orthogonal set of solutions of the 
Dirac equation for an electron interacting with a quantised, elliptically polarised, 
electromagnetic field. We have used the wavefunctions for a derivation of a relativistic 
S-matrix amplitude which describes the one-electron ionisation of an atom that has 
absorbed a given arbitrarily large number of photons. By considering the non-rela- 
tivistic limit of the S-matrix element, we have obtained the transition rate formula of 
Bashkansky er a1 (1987) rigorously in terms of the number of absorbed photons. It is 
suggested that the present QED result can be improved by taking the Coulomb field 
into account in the final scattering state. 
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Appendix 

Starting from the transformation (14) we wish to define a complete set {In,)} ( n  = 
0, 1 , 2 .  . .) of photon states. We require that 

(Al . l )  

with I-1)=0. By substituting the transformation (14) into equations (Al.1) and by 
using the closure relation I;/ n)( n I = 1 in the N, representation, we find that the ‘vacuum’ 
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state IOc) must fulfil the recursion relation 

c o s h x ~ ( n + l l O , ) - s i n h x ~ ( n - 1 1 0 , ) = 0  (A1.2) 
with (ll0,) = O .  Consequently, we have (n'10,)=0 if n' is odd. If n' is even, we find 
from equation (A1.2) that 

where t=(0 /0 , ) ,  ( - l ) ! ! = l  and n = 0 , 1 , 2  . . . .  Hence 

a2 ( 2 n - l ) ! !  
IO,) = t tanh" x 

n = O  

(A1.3) 

(Al .4)  

where t is determined by the normalisation condition (O,~O,) = 1 .  Using the expansion 
of (1 - tanh' x ) - ' ' ~  in powers of tanh x, it can easily be seen that t = (cosh X)-'I2, which 
proves equation (16). Once we have found IO,) we can generate a set of states 

(A1.5) 

These states, given by equation (17), are eigenstates of the Hermitian 'number' operator 
N, = f( C+C + cc+) = c+c + f, as can be seen from the following argument. Since ~10,) = 0 
according to the definition (14) and equation (A1.4), we have N,IO,) =floc) .  From the 
assumption Nclnc- 1 ) =  ( n ,  -f)Inc) and from equation (A1.5), it follows that 

Ncin,) = ( n c  +$)In,). (A1.6) 

Hence, by induction, the states (A1.5) fulfil the eigenvalue equation (A1.6), where the 
operator N, is Hermitian by virtue of the definitions (14) of c and c+. It follows that 
the set {In,)} is complete. It is easily checked by induction that the states (A1.5) also 
fulfil the starting relations (Al .1) .  Hence, it also follows that (n,in,) = 1. 

Appendix 2 

The shift operator (21) can be written in the N, representation by using the definition 
(14) and the inverse relation (18) to express E, and E: in terms of E and E*. The result 
is 

(A2.1) 0,' = exp(6,a+ - 6 : a )  

where 6, is given by equation (32) which we repeat here: 

S , = - e g p ( ~ * c o s h 2 ~ + ~  sinh2x)IC. (A2.2) 

The factor C has been given in connection with equation (20). We use the Baker- 
Hausdorff theorem in equation (A2. I )  according to which 

(A2.3) 

for two non-commuting operators A and B which satisfy [ A ,  [A ,  B ] ]  = [B,  [ A ,  B ] ]  = 0. 
The result is 

e A + B  - B A [A,B]/2 - e  e e 

+a2 O0 ( s , a + ) k ( - s : U ) k  
D,'= exp(-f(S,/') ( 8 , ~ ~ ) ~  C 

q=-m k = O  ( k + q ) ! k !  ' 
(A2.4) 
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Consequently, D;,m in equation (30) becomes 

Df,,=exp(-$IS,I2) c s ~ [ ~ ’ ( v - I ) .  . . ( ~ - q + l ) ] ” ~  
t m  

q=-oc 

(-S,S:)km(m-l).  . . ( m -  k + l )  
x c  ( k + q ) ! k !  SI ’ -m,q 

k = O  

4589 

(A2.5) 

Now the classical limit is taken by keeping q = 1‘- m finite while l’+ m and m + m  
simultaneously. We use the relation g d m  + A and observe that S , A +  -ehPE*/ kP. 
The same limit prevails for Sad? in equation (A2.5), where the square root can be 
replaced by 1tq’2. Using the definitions (36) and (37), we have 

where we have used the definition 

of a Bessel function of the first kind for integer q. This proves equation (35) .  
The proof of equation (38) is rather lengthy. It is based on the idea that 

J ,  = lim (mln,) 
m-m 

(A2.6) 

(A2.7) 

(A2.8) 
n-33 

n - m = 2 r  

must fulfil the same recursion relations as the Bessel function J ,  = J,( T), namely 

2tJ, = 7 7 ( J , + I  + J , - 1 )  (A2.9) 

and 

dJt / d 77 = %J,  - 1 - J,+ 1 (A2.10) 

with J o ( 0 )  = 1 .  If this can be proved then we know that equation (A2.8) defines a 
Bessel function. 

We start from equation (A1.6) and, by using the transformation (14), express the 
operator N, in terms of N, = f ( a + a + a a + )  and Ma = $ ( a 2 +  a+*). The result is 

C (cosh 2xN, -sinh 2~M,)lm)(mln,) = ( n  ++)In,) 
oc 

(A2.11) 
m=O 

which gives 
ot 

1 [ ( m  cosh 2x  - n - f ) (mln , )  - $  sinh 2x{[( m - l)”*m”*(m -2in,)] 
m = O  

where 

x = -$ tanh-’ 

(A2.12) 

(A2.13) 
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according to equation (19). We introduce the difference 2t = n - m and examine 
equation (A2.12) when both m and n become large but t stays finite. We need the limit 

T=- l im n x = f Z c o s [  (A2.14) 
n-cs 

where Z = e2A2/ kP is the ponderomotive potential energy per unit frequency in 
accordance with equations (33), (34) and (39). The limit follows from equation (A2.13) 
by using g f i +  A. Since cosh 2x + 1 and sinh 2x + 2x in that limit we have 

(A2.15) 

for large m and n according to equation (A2.12). The use of equation (A2.14) and of 
the definition of t in equation (A2.15) shows that the quantity (A2.8) fulfils the first 
recursion relation (A2.9). 

In order to prove the second recursion relation (A2.10) we need the derivative 

2t( mln,)+ xm(( m - 21 nc) + ( m  + 21nc)) = 0 

where 

dc+ 
dX 

Q =  n-(c+)"-'+f(n - l )n(c+)n-2+fc+nu+2,  

(A2.16) 

(A2.17) 

The first two terms in equation (A2.17) represent dc+"/dX and the third one is d/O,)/dX. 
In taking the classical limit of equation (A2.16) we observe that 

(A2.18) 

(A2.19) 
d ct 

lim -=-a 
n-= dX 

and that c+ and a t  commute for large n. Hence for large m and n but for fixed 
2t = n - m equation (A2.16) becomes 

d 
-- (mi n,) = -( m + lI( n - l),) + f[( mi( n - 2),) + (mi( n + 2),)] (A2.20) 

which is identical with the second recursion relation (A2.10) according to the definition 
(A2.8). 

dT 
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